Design of Smart Diffuser System using the Sensor Network and Machine Learning Techniques for Energy Efficiency and Human Comfort

Yaa Takyiwaa Acquaah, North Carolina A & T State University, ytacquaah@aggies.ncat. Raymond Tesiero, North Carolina A & T State University, rctesiero@ncat.edu Jonathan Steele, North Carolina A & T State University, jbsteele@aggies.ncat Balakrishna Gokaraju, North Carolina A & T State University, bgokaraju@ncat.edu

MOTIVATION

- Although the main function of the Heating, Ventilation and Air-conditioning (HVAC) system in commercial and residential buildings is to maintain comfortable indoor conditions, provide safety and acceptable indoor air quality, this has not been the case.
- Often, the HVAC system works at capacity to satisfy the one occupant who represents the "worst case" within that zone.
- The downside to HVAC systems is the associated high-power consumption.
- According to the building energy data book of the US Department of Energy (DOE), about 50% of the energy consumption in buildings is directly related to space heating, cooling and ventilation as shown in Figure 1.
- Achieving a level of individualized optimum comfort control within the same room or space in buildings is not possible today.
- Most organizations only use between 45% and 65% of their office space.

> Residential Sector Energy Consumption

Figure 1. 2015 Residential Energy End-Use Splits

OBJECTIVES

- Collection of multi-sensor readings in a tabular database format with the corresponding time-stamp of infrared images.
- Development of Machine Learning based AI models and big data Analytics for HVAC energy control utilizing Infrared Occupant Detection (IROD) and Smart Diffuser Sensor Network (SDSN).
- Calibration of sensors.
- Retraining of Machine Learning models for improved models.

NERARED THERMAL COMFORT REVIEW

Table 1. Studies on Advanced Infrared Sensing Techniques for Thermal Comfort Models

	Input variables		
Reference	Subject Feedback	Hardware	Deficiency/Drawbacks
(Ghahramani et al.,2016)	7 scales of thermal votes – (Much Too warm/ uncomfortably warm/ Comfortably warm/ Comfortable/ Comfortably Cool/ Uncomfortably Cool/ Much Too Cool	sensors(MLX90614), Two electrical heaters, AC	Method still required physical contact to the occupant which indicates intrusiveness.
Wang et al. (2017)	9 – perceptions (hot/cold/dry/humid/humid/glare/dark/draft/	Sensors (Temperature and Humidity, ${\rm CO_2}$ concentration, globe temperature, air speed, sound level, motion sensor and electricity meter	·
(Pavlin et al., 2017)	ASHRAE 7-point thermal sensation scale	Lepton infrared camera, Raspberry Pi 2, DHT11 sensor, ultrasonic sensor HC SR04, Resistance Temperature detector, Globe Thermometer, Capacitive Hygrometer	extracted crude measurements of
(Han et al., 2017)	5 – point scale thermal votes (comfortable/ slightly uncomfortable/ /uncomfortable, / very uncomfortable/ intolerably uncomfortable	Infrared camera, a computer, HMI on a cellphone, a control software, a ventilation fan, a fan coil unit, and a dehumidifier	
(Cosma and Simha, 2018)	3 – point scale thermal comfort votes (cold discomfort/ comfort / warm discomfort)	A depth sensor and color camera combination (Kinect 2), a thermographic camera (Flir lepton) and a point IR sensor (MLX90614)	_ ,
(Metzmacher et al., 2018)	N/A		Temperature sensor was affixed to the skin which makes method invasive.
(Burzo et. al., 2018)	3 – point scale thermal comfort votes (cold discomfort/ comfort / warm discomfort)	FLIR SC6700 Thermal camera, Flir One camera	Manual detection of thermal faces.

SENSOR INSTALLATION AND DATA COLLECTION

≻Preliminary Work

Figure 2. (a) Optrix Connect Software: Optrix PI 160 captures accurate, calibrated and noncontact temperature data in every pixel of each image.

- (b) Lepton camera connection.
- (c) Temperature and Humidity sensor and Arduino Uno connections.
- (d) Air Quality Monitor and Arduino Uno connections.
- (e) CO₂ sensor and Arduino Uno connections.

MACHINE LEARNING PROCESS FLOWCHART

Figure 3. Machine Learning Process Flow Chart

CONCLUSION

- This research distinguishes itself from the references reviewed in Table 1 by eliminating the conventional thermostatic control and developing a Machine Learning Model utilizing Big data Analytics by fusing the analog signals and thermal images from various sensors in the network to control the HVAC system.
- The preprogrammed microprocessors with Machine Learning models, measure and respond to room changes in heating and cooling changes.

KEY REFERENCES

- ASHRAE. Standard 55-2013. Thermal Environmental Conditions for Human Occupancy, 12; ASHRAE: Atlanta, GA, USA, 2013
- Ghahramani Ali & Castro, Guillermo & Ahmadi-Karvigh, Simin & Becerik-Gerber, Burcin. (2018). Towards unsupervised learning of thermal comfort using infrared thermography. Applied Energy. 211. 41-49. 10.1016/j.apenergy.2017.11.021.
- Cosma, Andrei-Claudiu & Simha, Rahul. (2018). Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera. Building and Environment. 143. 10.1016/j.buildenv.2018.06.052.